Seabed Mapping and Inspection Geilo 2013

Permanent Monitoring systems for Seabed Leakage Detection

Per Sparrevik Technical Expert Subsea Technology NGI Main Office OSLO Email: per.sparrevik@ngi.no

Seabed leaks Where do they come from?

 Natural vents: Faults, Pockmarks, and Chimneys Melting hydrates Shallow gas layers Long term leakage along well casings (cracked cement) Injection: fault reactivation/fracturing

• Lost well control and failing barriers

Seabed Mapping and Inspection Geilo 2013

The mysterious pockmarks at the Troll field Footprints from melted hydrate lumps (after the last glacial period)

Santa Barbara Tar seeps

From Woods Hole Oceanographic Institution (www.whoi.edu)

Barents Sea - Loppa High

from GEO365.no illustrations: NGU/Lundin Petroleum

Arctic Methane Flares

Seabed leakage

in conjunction with production "An Operators Nightmare"

Frade/Roncador 2011 and 2012

Reservoir "kick"/ Fault reactivation

Tordis- 2008

Water injection - fracturing Snorre A - 2004

Lost well control/failing barriers

All illustrations from the internet

Leakage along casing Charging shallow layers with gas

Seabed leaks Natural or introduced by production?

Bubble seeps present before production? Early long term monitoring may also be useful in order to establish the baseline before injection!

Chimneys West coast of Africa

Characteristics of Seabed Gas Leaks

From SOCOLOFSKY et al "Multi-phase plumes in uniform and stratified crossflow" JOURNAL OF HYDRAULIC RESEARCH, VOL. 40, 2002, NO. 6

Monitoring solution for Permanent seabed leakage detection in the vicinity of production facilities:

Traces and Features:

- Gas bubble trains or plumes
- Concentration of dissolved gas
- Seabed currents

- **Instrumentation:**
- Sonars
- Sniffers
- Current meters

Sonar gas leak detection

- Multibeam or Scanning sonar ?
- Aspect and detection capability
- Point of View, backscatter and acoustic shadows
- Automatic detection Filtering and identification

Frequency range multibeam/scanning sonars

Sonar gas leak detection Horizontal aspect and detection capability

Sonar head

Pile

Uphill

slope

VideoRay photos by Stinger Technology AS

Sonar gas leak detection Vertical aspect and detection capability

Sonar gas leak detection Acoustic shadows and blind zones

Sonar gas leak detection Point of view and "Blind" zones 30m sonar range

Automatic detection algorithms

Image processing steps:

Horizontal scanning sonar images are processed on a continuous basis including coherence of multiple images for automatic detection

Alarm confirmation by vertical sonar

"Sniffers" and Current meters Dissolved gas distributed by the water current

"Sniffers" and Current meters Example showing CH4 variations related to tidal cycles

Note that measured concentrations are well below predicted response for a leakage

Prototype system in operation

NG

An array of subsea leakage detection nodes including chemical sensors, active sonar's and current meters, has been installed at the seabed beneath an existing platform complex to monitor possible increased concentration of dissolved gas and detect possible leaks ranging from seeping bubbles (10 ltrs/min) to significant gas plumes. The objective is to provide early warning for conditions which may develop into critical leakage scenarios.

NG

Prototype system installation

Subsea images: DeepOcean (responsible for subsea installation)

Subsea image: Stinger Technology AS

Insitu testing Stinger Technology AS

Seabed Gas leakage simulator

Recorded in-situ response injecting10ml Methane in seawater close to a Sniffer

MicroROV with methane injector tubes

Remote operated "Watch dog" Onshore remote operated MicroROV

Permanent Monitoring systems for Seabed Leakage Detection

What's next?

Conclusions

Sonar hugging Starfish

Thank You for the Attention!

Email: per.sparrevik@ngi.no